A study to develop new catalyst CuO-ZnO-CeO2 for methanol synthesis from H2/CO2 mixture

  • Le Phuc Nguyen
  • Bui Vinh Tuong
  • Vu Thi Thanh Nguyet
  • Ho Nhut Linh
  • Nguyen Phan Cam Giang
  • Dang Thanh Tung
  • Nguyen Anh Duc
Keywords: CeO2, CuO-ZnO-CeO2, methanol synthesis, CuO-ZnO/Al2O3, TPR-H2


In this study, new catalysts based on CuO-ZnO-CeO2 were developed for the methanol systhesis from H2/CO2 mixture at low pressure. The catalysts were prepared by deposition of Cu-Zn over CeO2 (CZ/Ce) or by co-precipitation of Cu, Zn and Ce (CZ-Ce). Samples were evaluated by the reaction of converting H2/CO2 to methanol at 5 bar, 250°C, and GHSV = 36,000h-1. In addition, the catalysts were characterised by XRD, N2 adsorption, TPR-H2 and SEM-EDX. The methanol productivity of CZ/Ce catalyst (MTYCZ/Ce = 120.9gCH3OH. kgcata-1.h-1) is better than CZ-Ce (MTYCZ-Ce = 110.4 gCH3OH. kgcata-1.h-1) but its methanol selectivity is lower (SCH3OH(CZ/Ce) = 65.5%; SCH3OH(CZ-Ce) = 71.1%). It clearly demonstrated that the activity of CZ/Ce and CZ-Ce in methanol synthesis is 4.3-4.7 times as much as traditional CuO-ZnO/Al2O3 catalyst. Furthermore, the methanol selectivity of the new catalyst is also higher than that of CuO-ZnO-Al2O3 (5.2 - 5.7 times higher). The Cu-Ce interaction (revealed by TPR-H2) could be the active site for methanol synthesis from H2/CO2 mixture.


George A.Olah, Alain Goeppert, G.K.Surya rakash. Chemical recycling of carbon dioxide to methanol and dimethyl ether: From greenhouse gas to renewable, environmentally carbon neutral fuels and synthetic hydrocarbons. The Journal of Organic Chemistry. 2009; 74(2): p. 487 - 498.

Alejandro Karelovic, Alice Bargibant, Camila Fernández, Patricio Ruiz. Effect of the structural and morphological properties of Cu/ZnO catalysts prepared by citrate method on their activity toward methanol synthesis from CO2 and H2 under mild reaction conditions. Catalysis Today. 2012; 197(1): p. 109 - 118.

T.H.Fleisch, R.L.Mieville. Studies on the chemical state of Cu during methanol synthesis. Journal of Catalysis. 1984; 90(1): p. 165 - 172.

S.Pradhan, A.Satyanarayana Reddy, R.N.Devi, Satyanarayana Chilukuri. Copper-based catalysts for water gas shift reaction: Influence of support on their catalytic activity. Catalysis Today. 2009; 141(1 - 2): p. 72 - 76.

X.Wang, J.A.Rodriguez, J.C.Hanson, D.Gamarra, A.Martínez-Arias, M.Fernández-García. In situ studies of the active sites for the water gas shift reaction over Cu-CeO2 catalysts: complex interaction between metallic copper and oxygen vacancies of ceria. The Journal of Physical Chemistry B. 2006; 110(1): p. 428 - 434.

G.S.Zafiris, R.J.Gorte. Evidence for low-temperature oxygen migration from ceria to Rh. Journal of Catalysis. 1993; 139(2): p. 561 - 567.

Celestino Padeste, Noel W.Cant, David L.Trimm. The influence of water on the reduction and reoxidation of ceria. Catalysis Letters. 1993; 18: p. 305 - 316.

T.Bunluesin, R.J.Gorte, G.W.Graham. Studies of the water-gas-shift reaction on ceria-supported Pt, Pd, and Rh: Implications for oxygen-storage properties. Applied Catalysis B: Environmental. 1998; 15(1 - 2): p. 107 - 114.

S.Hilaire, X.Wang, T.Luo, R.J.Gorte, J.Wagner. A comparative study of water-gas-shift reaction over ceria supported metallic catalysts. Applied Catalysis A: General. 2001; 215(1 - 2): p. 271 - 278.

S.Hilaire, X.Wang, T.Luo, R.J.Gorte, J.Wagner. A comparative study of water-gas-shift reaction over ceria supported metallic catalysts. Applied Catalysis A: General. 2001; 215: p. 271 - 278.

Xinsheng Liu, Wolfgang Ruettinger, Xiaoming Xu, Robert Farrauto. Deactivation of Pt/CeO2 water-gas shift catalysts due to shutdown/startup modes for fuelcell applications. Applied Catalysis B: Environmental. 2005; 56(1 - 2): p. 69 - 75.

Xiucheng Zheng, Xiaoli Zhang, Xiangyu Wang, Shurong Wang, Shihua Wu. Preparation and characterization of CuO/CeO2 catalysts and their applications in low-temperature CO oxidation. Applied Catalysis A: General. 2005; 295(2): p. 142 - 149.

Lê Phúc Nguyên, Bùi Vĩnh Tường, Hà Lưu Mạnh Quân, Vũ Thị Thanh Nguyệt, Nguyễn Phan Cẩm Giang, Đặng Thanh Tùng, Nguyễn Anh Đức. Ảnh hưởng của điều kiện hoạt hóa xúc tác đến hiệu suất quá trình tổng hợp methanol từ hỗn hợp H2/CO2 ở áp suất thấp trên hệ xúc tác CuO-ZnO-Al2O3. Tạp chí Hóa học. 2013; 51: trang 589 - 594.

K.D.M.Harris, M.Tremayne, B.M.Kariuki. Contemporary advances in the use of powder X-Ray diffraction for structure determination. Angewandte Chemie International Edition. 2001; 40(9): p. 1626 - 1651.

Son-Ki.Ihm, Young-Kwon Park, Jong-Ki Jeon, Kwang-Cheon Park, Dong-Keun Lee. A study on methanol synthesis through CO2 hydrogenation over copper-based catalysts. Studies in Surface Science and Catalysis. 1998; 114: p. 505 - 508.

George Avgouropoulos, Theophilos Ioannides. Selective CO oxidation over CuO-CeO2 catalysts prepared via the urea-nitrate combustion method. Applied Catalysis A: General. 2003; 244(1): p. 155 - 167.

G.Fierro, M.Lojacono, M.Inversi, P.Porta, R.Lavecchia, F.Cioci. A study of anomalous temperatureprogrammed reduction profiles of Cu2O, CuO and CuO-ZnO catalysts. Journal of Catalysis. 1994; 148(2): p. 709 - 721.

Yue Li, Qi Fu, Maria Flytzani-Stephanopoulos. Low-temperature water-gas shift reaction over Cu- and Ni-loaded cerium oxide catalysts. Applied Catalysis B: Environmental. 2000; 27(3): p.179 - 191.

T.Tabakova, F.Boccuzzi, M.Manzoli, J.W.Sobczak, V.Idakiev, D.Andreeva. A comparative study of nanosized IB/ceria catalysts for low-temperature water-gas shift reaction. Applied Catalysis A: General. 2006; 298: p. 127 - 143.

How to Cite
Nguyen, L. P., Tuong, B. V., Nguyet, V. T. T., Linh, H. N., Giang, N. P. C., Tung, D. T., & Duc, N. A. (2014). A study to develop new catalyst CuO-ZnO-CeO2 for methanol synthesis from H2/CO2 mixture. Petrovietnam Journal, 1, 52-58. Retrieved from http://pvj.com.vn/index.php/TCDK/article/view/541

Most read articles by the same author(s)