Technologies for production of green hydrogen and hydrogen based synthetic fuels
Abstract
Hydrogen is an essential material/fuel for industry and energy conversion. The processes for producing hydrogen depend on the raw materials and energy source used. In terms of climate impacts, the most promising hydrogen production method is water electrolysis. The regenerative electrolysis process depends on the carbon intensity of the electricity and the efficiency of converting that electricity into hydrogen. The development of technologies to extract hydrogen (from conventional and renewable resources) tends to optimise the water electrolysis process using renewable energies by extending material durability, increasing performance efficiency, and reducing precious metal contents in catalysts, thereby lowering the production costs. The article introduces the latest advances in green hydrogen production technologies using renewable energies, particularly focusing on water and seawater electrolysis, combining electrolysis and solar energy as well as hydrogen-based synthetic fuel production, hydrogen production from biomass and biogas.
References
IEA, "Global hydrogen review 2021", 10/2021. [Online]. Available: https://www.iea.org/reports/global-hydrogen-review-2021.
Ibrahim Dincer and Canan Acar, "Review and evaluation of hydrogen production methods for better sustainability”, International Journal of Hydrogen Energy, Vol. 40, No. 34, pp. 11094 - 11111, 2015. DOI: 10.1016/j.ijhydene.2014.12.035.
IEA, “The future of hydrogen: Seizing today’s opportunities”, 6/2019. [Online]. Available: https://www.iea.org/reports/the-future-of-hydrogen.
Pavlos Nikolaidis and Andreas Poullikkas, “A comparative overview of hydrogen production processes”, Renewable and Sustainable Energy Reviews, Vol. 67, pp. 597 - 611, 2017. DOI: 10.1016/j.rser.2016.09.044.
Christopher Graves, Sune D. Ebbesen, Mogens Mogensen, and Klaus S. Lackner, "Sustainable hydrocarbon fuels by recycling CO2 and H2O with renewable or nuclear energy”, Renewable and Sustainable Energy Reviews, Vol. 15, No. 1, pp. 1 - 23, 2011. DOI: 10.1016/j.rser.2010.07.014.
Van Nhu Nguyen and Ludger Blum, "Syngas and synfuels from H2O and CO2: Current status", Chemie Ingenieur Technik, Vol. 87, No. 4, pp. 354-375, 2015. DOI: 10.1002/cite.201400090.
Bundesministerium Für Bildung Und Forschung, "Wie das Kopernikus-projekt P2X erneuerbaren strom in kunst- und kraftstoffe, gase und wärme umwandelt". [Online]. Available: https://www.kopernikus-projekte.de/projekte/p2x/#roadmaps.
The National Renewable Energy Laboratory, "Renewable electrolysis". [Online]. Available: https://www.nrel.gov/hydrogen/renewable-electrolysis.html.
Ibrahim Dincer and Canan Acar, "Smart energy solutions with hydrogen options", International Journal of Hydrogen Energy, Vol. 43, No. 18, pp. 8579 - 8599, 2018. DOI: 10.1016/j.ijhydene.2018.03.120.
Marcelo Carmo and Detlef Stolten, "Chapter 4 - Energy storage using hydrogen produced from excess renewable electricity: Power to hydrogen", Science and Engineering of Hydrogen-Based Energy Technologies: Hydrogen Production and Practical Applications in Energy Generation. Academic Press, 2019, pp. 165 - 199.
A. Hauch, R. Küngas, P. Blennow, A.B. Hansen, J.B. Hansen, B.V. Mathiesen, and M.B. Mogensen, "Recent advances in solid oxide cell technology for electrolysis", Science, Vol. 370, No. 6513, 2020. DOI: 10.1126/science.aba6118.
Nguyễn Hữu Lương, Nguyễn Thị Châu Giang, và Huỳnh Minh Thuận, "Sản xuất hydrogen từ các nguồn tái tạo và sử dụng trong các nhà máy chế biến dầu khí tại Việt Nam", Tạp chí Dầu khí, Số 11, trang 37 - 55, 2020. DOI: 10.47800/PVJ.2020.11-04.
Hamish Andrew Miller, Karel Bouzek, Jaromir Hnat, Stefan Loos, Christian Immanuel Bernäcker, Thomas Weißgärber, Lars Röntzsch, and Jochen Meier-Haack, "Green hydrogen from anion exchange membrane water electrolysis: A review of recent developments in critical materials and operating conditions", The Royal Society of Chemistry, Vol. 4, pp. 2114 - 2133, 2020.
Pavlos Nikolaidis and Andreas Poulikkas, "A comparative overview of hydrogen production processes", Renewable and Sustainable Energy Reviews, Vol. 67, pp. 597 - 611, 2017.
Energy Transitions Commission, "Making the hydrogen economy possible: Hydrogen accelerating clean hydrogen in an electrified economy”, 4/2021. [Online]. Available: https://www.energy-transitions.org/publications/making-clean-hydrogen-possible/. https://energy-transitions.org/wp-content/uploads/2021/04/ETC-Global-Hydrogen-Report.pdf.
Van Nhu Nguyen and L. Blum, "5 - Reversible fuel cells", Compendium of Hydrogen Energy, Volume 3: Hydrogen Energy Conversion. Woodhead Publishing, 2016, pp. 115 - 145.
Roland Peters, Matthias Frank, Wilfried Tiedemann, Ingo Hoven, Robert Deja, Van Nhu Nguyen, Ludger Blum and Detlef Stolten, "Development and Testing of a 5kW-Class Reversible Solid Oxide Cell System", ECS Transactions, Vol. 91, No. 1, 2019.
Trutz Theuer, Dominik Schäfer, Lucy Dittrich, Markus Nohl, Severin Foit, Ludger Blum, Rüdiger-A. Eichel, and L.G.J. De Haart, “Sustainable syngas production by high-temperature co-electrolysis”, Chemie Ingenieur Technik, Vol 92, pp. 40 - 44, 2020.
Lucy Dittrich, Markus Nohl, Esther E. Jaekel, Severin Foit, L.G.J. (Bert) De Haart, and Rüdiger-A. Eichel, "High-temperature co-electrolysis: A versatile method to sustainably produce tailored syngas compositions", Journal of the Electrochemical Society, Vol. 166, No. 13, 2019.
Yun Kuang, Michael. J. Kenney, Yongtao Meng, Wei-Hsuan Hung, Yijin Liu, Jianan Erick Huang, Rohit Prasanna, Pengsong Li, Yaping Li, Lei Wang, Meng-Chang Lin, Michael D. McGehee, Xiaoming Sun, and Hongjie D. Dai, “Solar-driven, highly sustained splitting of seawater into hydrohydrogengen and oxygen fuels”, PNAS. DOI: 10.1073/pnas.1900556116.
M.A. Khan, Tareq Al-Attas, Soumyabrata Roy, Muhammad M. Rahman, Noreddine Ghaffour, Venkataraman Thangadurai, Stephen Larter, Jinguang Hu, Pulickel M. Ajayan, Md Golam Kibria, “Seawater electrolysis for hydrogen production: a solution looking for a problem?”, Energy & Environmental Science, Vol 14, pp. 4831 - 4839, 2021.
Christian Geipel, Karl Hauptmeier, Kai Herbrig, Frank Mittmann, Markus Münch, Martin Pötschke, Ludwig Reichel, Thomas Strohbach, Tobias Seidel, and Alexander Surrey, “Stack development and industrial scale-up”, ECS Transactions, Vol. 91, 2019.
Ulrik Frøhlke, "Haldor Topsoe to build large-scale SOEC electrolyzer manufacturing facility to meet customer needs for green hydrogen production", 2021. [Online]. Available: https://blog.topsoe.com/haldor-topsoe-to-build-large-scale-soec-electrolyzer-manufacturing-facility-to-meet-customer-needs-for-green-hydrogen-production.
Marcelo Carmo, Gareth P. Keeley, Daniel Holtz, Thomas Grube, Martin Robinius, Martin Müller, and Detlef Stolten, "PEM water electrolysis: Innovative approaches towards catalyst separation, recovery and recycling", International Journal of Hydrogen Energy, Vol. 44, pp. 3450 - 3455, 2019. DOI: 10.1016/j.ijhydene.2018.12.030.
Friedemann Hegge, Florian Lombeck, Florian Lombeck, Edgar Cruz Ortiz, Luca Bohn, Miriam von Holst, Matthias Kroschel, Jessica Hübner, Matthias Breitwieser, Peter Strasser, and Severin Vierrath, "Efficient and Stable Low Iridium Loaded Anodes for PEM Water Electrolysis Made Possible by Nanofiber Interlayers", ACS Applied Energy Materials, Vol. 3, No. 9, pp. 8276 - 8284, 2020. DOI: 10.1021/acsaem.0c00735.
Florian Ausfelder and Hanna Dura, "3. Roadmap des Kopernikus-Projektes P2X Phase II: Optionen für ein nachhaltiges energie-system mit power-to-x-technologien: Transformation - Anwendungen - Potenziale", 2021. [Online]. Available: https://www.kopernikus-projekte.de/lw_resource/datapool/systemfiles/elements/files/CBE2878A53D522EEE0537E695E868061/live/document/DEC_P2X_II_V06_Online_small.pdf.
Cordis, “Renewable energy through new electrolysis catalysts for water splitting”. [Online]. Available: https://cordis.europa.eu/project/id/895296.
Steffen Schemme, Janos Lucian Breuer, Maximilian Köller, Sven Meschede, Fiona Walman, Remzi Can Samsun, Ralf Peters, and Detlef Stolten, “H2-based synthetic fuels: A techno-economic comparison of alcohol, ether and hydrocarbon production”, International Journal of Hydrogen Energy, Vol. 45, pp. 5395 - 5414, 2020. DOI: 10.1016/j.ijhydene.2019.05.028.
Ligang Wang, Mar Pe´rez-Fortes, Hossein Madi, Stefan Diethelm, Jan Van herle, and François Mare´chal, “Optimal design of solid-oxide electrolyzer based power-to-methane systems: A comprehensive comparison between steam electrolysis and co-electrolysis”, Applied Energy, Vol. 211, pp. 1060 - 1079, 2018. DOI: 10.1016/j.apenergy.2017.11.050.
Riezqa Andika, Asep Bayu Dani Nandiyanto, Zulfan Adi Putra, Muhammad Roil Bilad, Young Kim, Choa Mun Yun, and Moonyong Lee, “Co-electrolysis for power-tomethanol applications”, Renewable Sustainable Energy Reviews, Vol. 95, pp. 227 - 241, 2018. DOI: 10.1016/j.rser.2018.07.030.
Joshua M. Spurgeon and Bijandra Kumar, “A comparative technoeconomic analysis of pathways for commercial electrochemical CO2 reduction to liquid products”, Energy Environmental Science, Vol. 11, pp. 1536 - 1551, 2018.
Vincent Dieterich, Alexander Buttler, Andreas Hanel, Hartmut Spliethoff, and Sebastian Fendt, “Power-to-liquid via synthesis of methanol, DME or Fischer-Tropsch-fuels: A review”, Energy & Environmental Science, 2020. DOI: 10.1039/d0ee01187h.
Solarify, "Weltgrößte power-to-X-Anlage in Leuna", 20/1/2021. [Online]. Available: https://www.solarify.eu/2021/01/20/477-0-weltgroesste-power-to-x-anlage-in-leuna/.
Energie Park Mainz, "Power-to-gas im energiepark mainz: Bisherige betriebserfahrung, aktueller projektstand und ausblick", 2017. [Online]. Available: https://www.m-r-n.com/neuigkeiten/2017/20171019-Regionalkonferenz%20Energie%20-%20Umwelt/F3_Aichinger_Mainz%20E-Park.pdf.
Wen-Hui Cheng, Matthias H. Richter, Matthias M. May, Jens Ohlmann, David Lackner, Frank Dimroth, Thomas Hannappel, Harry A. Atwater, and Hans-JoachimLewerenz, “Monolithic photoelectrochemical device for direct water splitting with 19% efficiency”, ACS Energy Lett, Vol. 3, No. 8, pp. 1795 - 1800, 2018. DOI: 10.1021/acsenergylett.8b00920.
M. Reuß, J. Reul, T. Grube, M. Langemann, S. Calnan, M. Robinius, R. Schlatmann, U. Rau, and D. Stolten, "Solar hydrogen production: A bottom-up analysis of different photovoltaic-electrolysis pathway", Sustainable Energy & Fuels, No. 3, 2019.DOI: 10.1039/C9SE00007K.
Jieyang Jia, Linsey C. Seitz, Jesse D. Benck, Yijie Huo, Yusi Chen, Jia Wei Desmond Ng, Taner Bilir, James S. Harris and Thomas F. Jaramillo, "Solar water splitting by photovoltaic-electrolysis with a solar-to-hydrogen efficiency over 30%", Nature Communications, Vol. 7, 2016.
Alexa Grimm, Wouter A. De Jong and Gert Jan Kramer, "Renewable hydrogen production: A techno-economic comparison of photoelectrochemical cells and photovoltaic-electrolysis", International Journal of Hydrogen Energy, Vol. 45, No. 43, pp. 22545 - 22555, 2020.
Vaishali Singh and Debabrata Das, "Potential of hydrogen production from biomass", Science and Engineering of Hydrogen-Based Energy Technologies, 2019. DOI: 10.1016/B978-0-12-814251-6.00003-4.
Kamlesh Sharma, "Carbohydrate-to-hydrogen production technologies: A mini-review", Renewable and Sustainable Energy Reviews, Vol. 105, pp. 138 - 143, 2019. DOI: 10.1016/j.rser.2019.01.054.
Ping Zhang, Yan-Jun Guo, Jianbin Chen, Yu-Rou Zhao, Jun Chang, Henrik Junge, Matthias Beller, and Yang Li, "Streamlined hydrogen production from biomass", Nature Catalysis, Vol. 1, pp. 332 - 338, 2018.
Shiplu Sarker, Jacob J. Lamb, Dag R. Hjelme, and Kristian M. Lien, "Overview of recent progress towards in-situ biogas upgradation techniques", Fuel, Vol. 226, pp. 686 - 697, 2018. DOI: 10.1016/j.fuel.2018.04.021.
Jacob Joseph Lamb, “Upgrading biogas to biomethane”, Anaerobic Digestion: From Biomass to Biogas, 2020. DOI: 10.48216/9788269203325CH9.
Shailey Singhal, Shilpi Agarwal, Shefali Arora, Pankaj Sharma, and Naveen Singhal, "Upgrading techniques for transformation of biogas to bio-CNG: A review", International Journal Energy Reviews, Vol. 41, No. 12, pp. 1657 - 1669, 2017. DOI: 10.1002/er.3719.
Daniel Girma Mulat, Freya Mosbæk, Alastair James Ward, Daniela Polag, Markus Greule, Frank Keppler, Jeppe Lund Nielsen, and Anders Feilberg, "Exogenous addition of H2 for an in situ biogas upgrading through biological reduction of carbon dioxide into methane", Waste Management, Vol. 68, pp. 146 - 156, 2017. DOI: 10.1016/j.wasman.2017.05.054.
Camila O. Calgaro and Oscar W. Perez-Lopez, "Biogas dry reforming for hydrogen production over Ni-M-Al catalysts (M = Mg, Li, Ca, La, Cu, Co, Zn)", International Journal of Hydrogen Energy, Vol. 44, No. 33, pp. 17750 - 17766, 2019. DOI: 10.1016/j.ijhydene.2019.05.113.
Xianhui Zhao, Babu Joseph, John Kuhn, and Soydan Ozcan, “Biogas reforming to syngas: A review”, IScience, Vol. 23, No. 5, 2020. DOI: 10.1016/j.isci.2020.101082.
Gioele Di Marcoberardino, Dario Vitali, Francesco Spinelli, Marco Binotti, and Giampaolo Manzolini, "Green hydrogen production from raw biogas: A techno-economic investigation of conventional processes using pressure swing adsorption unit", Processes, Vol. 6, No. 3, 2018. DOI: 10.3390/pr6030019.
Shiplu Sarker, Anna S.R. Nordgård, Jacob J. Lamb, and Kristian M. Lien, "Chapter 5 - Biogas and hydrogen", Hydrogen, biomass and bioenergy: Integration pathways for renewable energy applications. Elsevier, 2020, pp. 73 - 87. DOI: 10.1016/B978-0-08-102629-8.00005-0.
Cordis, “Periodic reporting for period 2 - BIOROBURplus (Advanced direct biogas fuel processor for robust and cost-effective decentralised hydrogen production)”. [Online]. Available: https://cordis.europa.eu/project/id/736272/reporting.
Nuria Sánchez-Bastardo, Robert Schlögl, Holger Ruland, “Methane pyrolysis for zero-emission hydrogen production: A potential bridge technology from fossil fuels to a renewable and sustainable hydrogen economy”, Industrial & Engineering Chemistry Research, Vol. 60, pp. 11855 - 11881, 2021.
BrandonJosé Leal Pérez, José Antonio Medrano Jiménez, Rajat Bhardwaj, Earl Goetheer, Martin van Sint Annaland, and Fausto Gallucci, “Methane pyrolysis in a molten gallium bubble column reactor for sustainable hydrogen production: Proof of concept & techno-economic assessment”, International Journal of Hydrogen Energy, Vol. 46, pp. 4917 - 4935, 2021. DOI: 10.1016/j.ijhydene.2020.11.079.
R.A.Dagle, V. Dagle, M.D. Bearden, J. D. Holladay, T.R.Krause, and S. Ahmed, “An overview of natural gas conversion technologies for co-production of hydrogen and value-added solid carbon products”, USDOE Office of Energy Efficiency and Renewable Energy (EERE), Transportation Office. Fuel Cell Technologies Office, 2017. DOI: 10.2172/1411934.
1. The Author assigns all copyright in and to the article (the Work) to the Petrovietnam Journal, including the right to publish, republish, transmit, sell and distribute the Work in whole or in part in electronic and print editions of the Journal, in all media of expression now known or later developed.
2. By this assignment of copyright to the Petrovietnam Journal, reproduction, posting, transmission, distribution or other use of the Work in whole or in part in any medium by the Author requires a full citation to the Journal, suitable in form and content as follows: title of article, authors’ names, journal title, volume, issue, year, copyright owner as specified in the Journal, DOI number. Links to the final article published on the website of the Journal are encouraged.