Application of Sentinel 1 imagery data to detect and classify oil spills on the ocean
Abstract
Sentinel is the name of a series of Earth observation missions (from Sentinel 1 to Sentinel 6) developed by the Copernicus initiative and operated by the European Space Agency (ESA). Sentinel satellite image data, which includes optical and radar images, provided completely free of charge, has been widely and effectively used in Earth research. The paper presents a technical solution using Sentinel 1 satellite image in detecting and monitoring oil spill pollution at sea, testing for Mauritius sea area. The Otsu automatic thresholding method was applied to extract oil spills at sea from Sentinel 1A radar images. The processing was done on the Google Earth Engine (GEE) cloud computing platform. The results of the study contribute to improving the efficiency of the application of radar remote sensing data in early detection and classification of oil spills, supporting the response to oil spill pollution at sea.
References
Nguyễn Đình Dương, Ô nhiễm dầu trên biển và quan trắc bằng viễn thám siêu cao tần. Nhà xuất bản Khoa học và Kỹ thuật, 2011, trang 107 - 137.
Trịnh Lê Hùng, “Phương pháp phân tích texture trong phát hiện vết dầu tràn bằng dữ liệu ảnh ENVISAT ASAR”, Tạp chí Dầu khí, Số 12, trang 44 - 47, 2013.
Damián Mira Martínez, Pablo Gil, Beatriz Alacid, and Fernando Torres, “Oil spill detection using segmentation-based approaches”, Proceedings of the 6th International Conference on Pattern Recognition Applications and Methods, 24 - 26 February 2017. DOI: 10.5220/0006191504420447.
Alaa Sheta, Mouhammd Alkasassbed, Malik Sh. Braik, and Hafsa Abu Ayyash, “Detection of oil spills in SAR images using threshold segmenation algorithms”, International Journal of Computer Applications, Vol. 57, No. 7, pp. 10 - 15, 2012.
Fangjie Yu, Wuzi Sun, Jiaojiao Li, Yang Zhao, Yanmin Zhang, and Ge Chen, “An improved Otsu method for oil spill detection from SAR images”, Oceanologia, Vol. 59, No. 3, pp. 311 - 317, 2017.
Régia T.S. Araújo, Fátima N.S. de Medeiros, Rodrigo C.S. Costa, Régis C.P. Marques, Rafael B. Moreira, and Jilseph L. Silva, “Locating oil spill in SAR images using wavelets and region growing”, IEA/AIE'2004: Proceedings of the 17th International Conference on Innovations in Applied Artificial Intelligence, 2004.
Konstantinos Topouzelis, Vassilia Karathanassi, Petros Pavlakis, and Demetrius Rokos, “A new object - oriented methodology to detect oil spills using Envisat images”, Proceedings of Envisat Symposium, Montreux, Switzerland, 23 - 27 April 2007.
Yonglei Fan, Xiaoping Rui, Guangyuan Zhang, Tian Yu, Xijie Xu, and Stefan Posld, “Feature merged network for oil spill detection using SAR images”, Remote Sensing, Vol. 13, No. 16, 2021. DOI: 10.3390/rs13163174.
Iphigenia Keramitsoglou, Constantinos Cartalis, and Chris T. Kiranoudis, “Automatic identification of oil spills on satellite images”, Environmental Modelling and Software, Vol. 21, No. 5, pp. 640 - 652, 2006. DOI: 10.1016/j. envsoft.2004.11.010.
Alireza Taravat and Fabio Del Frate, “Development of band rationing algorithm and neural networks to detection of oil spills using Landsat ETM+ data”, EURASIP Journal on Advances in Signal Processing, 2012.
Polychronis Kolokoussis and Vassilia Karathanassi, “Oil spill detection and mapping using Sentinel 2 imagery”, Journal of Marine Science and Engineering, Vol. 6, No. 1, 2018.
Sankaran Rajendran, Ponnumony Vethamony, Fadhil N. Sadooni, Hamad Al- SaadAl-Kuwari, Jassim A.AlKhayat, Himanshu Govil, and Sobhi Nasir, “Sentinel-2 image transformation methods for mapping oil spill - A case study with Wakashio oil spill in the Indian ocean, off Mauritius”, MethodsX, Vol. 8, 2021. DOI: 10.1016/j. mex.2021.101327. [13] Nobuyuki Otsu, “A threshold selection methodfrom gray-level histograms”, IEEE Transactions on Systems, Man, and Cybernetics: Systems, Vol. 9, No. 1, pp. 62 - 66, 1979.
Liang-Kai Huang and Mao-Jiun J. Wang, “Image thresholding by minimizing the measures of fuzziness”, Pattern Recognition, Vol. 28, No. 1, pp. 41 - 51, 1995. DOI: 10.1016/0031-3203(94)E0043-K.
Jui-Cheng Yen, Fu-Juay Chang, and Shyang Chang, “A new criterion for automatic multilevel thresholding”, IEEE Transactions on Image Processing, Vol. 4, No. 3, pp. 370 - 378, 1995. DOI: 10.1109/83.366472.
B. Brisco, N. Short, J.V.D. Sanden, R. Landry, and D. Raymond, “A semi-automated tool for surface water mapping with Radarsat-1”, Canadian Journal of Remote Sensing, Vol. 35, No. 4, pp. 336 - 344, 2009. DOI: 10.5589/ m09-025.
Nguyễn Lê Mai Duyên và Trương Minh Thuận, “Kết hợp phương pháp phân ngưỡng và Graphcut trong phân tích ảnh y khoa để hỗ trợ chẩn đoán”, Tạp chí Khoa học và Công nghệ, Đại học Duy Tân, Tập 1, Số 32, trang 88 - 99, 2019.
Trần Thanh Tùng và Mai Duy Khánh, “Nghiên cứu quy luật diễn biến doi cát ven bờ khu vực cửa Tiên Châu bằng ảnh vệ tinh Landsat”, Tạp chí Khoa học Kỹ thuật Thủy lợi và Môi trường, Số 71, trang 19 - 26, 2020.
Owen Mulhern, “Mapping the Mauritius oil spill”, 24/12/2021. [Online]. Available: https://earth.org/data_visualization/mapping-the-mauritius-oil-spill/.
1. The Author assigns all copyright in and to the article (the Work) to the Petrovietnam Journal, including the right to publish, republish, transmit, sell and distribute the Work in whole or in part in electronic and print editions of the Journal, in all media of expression now known or later developed.
2. By this assignment of copyright to the Petrovietnam Journal, reproduction, posting, transmission, distribution or other use of the Work in whole or in part in any medium by the Author requires a full citation to the Journal, suitable in form and content as follows: title of article, authors’ names, journal title, volume, issue, year, copyright owner as specified in the Journal, DOI number. Links to the final article published on the website of the Journal are encouraged.