Synthesis of polyaniline doped with decylphosphonic acid by interfacial polymerisation
Abstract
The polyaniline nanofibers were successfully synthesised by interfacial polymerisation at room temperature using a solution of aniline in toluene as the organic phase, ammonium peroxydisulfate oxidant (APS) and decylphosphonic acid (DcPA) as the aqueous phase. This PANI synthesis was realised at the Petrochemical Laboratory of Danang University of Technology - University of Danang. The FT-IR and UV-vis absorption spectra were used to characterise the molecular structures of the polyaniline obtained from this method. The polyaniline doped with decylphosphonic acid (PANI-inter-DcPA) has a uniform nanofiber structure with the average diameter of about 50nm as observed by scanning electron microscopy (SEM).
References
D.Du, X.Ye, J.Cai, J.Liu, A.Zhang. Acetylcholinesterase biosensor design based on carbon nanotube-encapsulated polypyrrole and polyaniline copolymer for amperometric detection of organophosphates. Biosensors and Bioelectronics. 2010; 25(11): p. 2503 - 2508.
Q.Liu, M.H.Nayfeh, S.T.Yau. Brushed-on flexible supercapacitor sheets using a nanocomposite of polyaniline and carbon nanotubes. Journal of Power Sources. 2010; 195(21): p. 7480 - 7483.
L.He, Y.Jia, F.Meng, M.Li, J.Liu. Gas sensors for ammonia detection based on polyaniline-coated multi-wall carbon nanotubes. Materials Science and Engineering: B. 2009; 163(2): p. 76 - 81.
S.Bhadra, N.K.Singha, D.Khastgir. Polyaniline by new miniemulsion polymerization and the effect of reducing agent on conductivity. Synthetic Metals. 2006; 156(16 - 17); p. 1148 - 1154.
J.Unsworth, B.A.Lunn, P.C.Innis, Z.Jin, A.Kaynak, N.G.Booth. Technical review: Conducting polymer electronics. Journal of Intelligent Material Systems and Structures. 1992; 3(3): p. 380 - 395.
E.Kang. Polyaniline: A polymer with many interesting intrinsic redox states. Progress in Polymer Science. 1998; 23(2): p. 277 - 324.
J.Stejskal, P.Kratochvíl, A.D.Jenkins. The formation of polyaniline and the nature of its structures. Polymer. 1996; 37(2): p. 367 - 369.
S.Bhadra, D.Khastgir, N.K.Singha, J.H.Lee. Progress in preparation, processing and applications of polyaniline. Progress in Polymer Science. 2009; 34(8): p. 783 - 810.
Phan Thế Anh, Nguyễn Đình Lâm, François-XavierX Perrin. Tổng hợp polyaniline theo phương pháp trùng hợp nhũ tương đảo. Tạp chí Khoa học và Công nghệ, Đại học Đà Nẵng. 2011; 3(44), p. 12 - 19.
J. Huang, R.B.Kaner. A general chemical route to polyaniline nanofibers. Journal of American Chemical Society. 2004; 126 (3): p. 851 - 855.
X.Zhang, R.Chan-Yu-King, A.Jose, S.K.Manohar. Nanofibers of polyaniline synthesized by interfacial polymerization. Synthetic Metals. 2004; 145(1): p. 23 - 29.
J.Chen, D.Chao, X.Lu, W.Zhang. Novel interfacial polymerization for radially oriented polyaniline nanofibers. Materials Letters. 2007; 61(6): p. 1419 - 1423.
X.H.To, N.Pebere, N.Pelaprat, B.Boutevin, Y.Hervaud. A corrosion-protective film formed on a carbon steel by an organic phosphonate. Corrosion Science. 1997; 39(10 - 11): p. 1925 - 1934.
Y.Gonzalez, M.C.Lafont, N.Pebere, G.Chatainier, J.Roy, T.Bouissou. A corrosion inhibition study of a carbon steel in neutral chloride solutions by zinc salt/phosphonic acid association. Corrosion Science. 1995; 37(11): p. 1823 - 1837.
H.S.O.Chan, S.C.Ng, P.K.H.Ho. Polyanilines doped with phosphonic acids: Their preparation and characterization. Macromolecules. 1994; 27(8): p. 2159 - 2164.
J.Stejskal, R.G.Gilbert. Polyaniline. Preparation of a conducting polymer (IUPAC Technical Report). Pure and Applied Chemistry. 2002; 74(5): p. 857 - 867.
Y.G.Han, T.Kusunose, T.Sekino. One-step reverse micelle polymerization of organic dispersible polyaniline nanoparticles. Synthetic Metals. 2009; 159(1 - 2): p. 123 - 131.
J.Stejskal, P.Kratochvíl, N.Radhakrishnan. Polyaniline dispersions 2. UV-vis absorption spectra. Synthetic Metals. 1993; 61(3): p.225 - 231.
H.Khalil, K.Levon. Shear-Induced delocalization of polarons in polyaniline-surfactant complexes. Macromolecules. 2002; 35(21): p. 8180 - 8184.
P.Ghosh, A.Chakrabarti, S.K.Siddhanta. Studies on stable aqueous polyaniline prepared with the use of polyacrylamide as the water soluble support polymer. European Polymer Journal. 1999; 35(5): p. 803 - 813.
Subrahmanya Shreepathi, Rudoft Holze. Spectroelectrochemistry and preresonance raman spectroscopy of polyaniline -dodecylbenzenesulfonic acid colloidal dispersions. Langmuir. 2006; 22(11): p. 5196 - 5204.
Zhao Ping. In situ FTIR-attenuated total reflection spectroscopic investigations on the base-acid transitions of polyaniline. Base-acid transition in the emeraldine form of polyaniline. Journal of the Chemical Society, Faraday Transactions. 1996; 92(17): p. 3063 - 3067.
J.Tang, X.Jing, B.Wang, F.Wang. Infrared spectra of soluble polyaniline. Synthetic Metals. 1988; 24(3): p. 231 - 238.
S.Quillard, G.Louarn, S.Lefrant, A.G.Macdiarmid. Vibrational analysis of polyaniline: A comparative study of leucoemeraldine, emeraldine, and pernigraniline bases. Physical Review B. 1994; 50(17): p. 12496 - 12508.
P.Fiurasek and L.Reven. Phosphonic and sulfonic acid-functionalized gold nanoparticles: A solid-state NMR study. Langmuir. 2007; 23(5): p. 2857 - 2866.
X.Zhang, R.Chan-Yu-King, S.K.Manohar, A.Jose. Nanofibers of polyaniline synthesized by interfacial polymerization. Synthetic Metals. 2004; 145(1): p. 23 - 29.
J. Huang and R. B. Kaner. A general chemical route to polyaniline nanofibers. Journal of American Chemical Society. 2004; 126(3): p. 851 - 855.

1. The Author assigns all copyright in and to the article (the Work) to the Petrovietnam Journal, including the right to publish, republish, transmit, sell and distribute the Work in whole or in part in electronic and print editions of the Journal, in all media of expression now known or later developed.
2. By this assignment of copyright to the Petrovietnam Journal, reproduction, posting, transmission, distribution or other use of the Work in whole or in part in any medium by the Author requires a full citation to the Journal, suitable in form and content as follows: title of article, authors’ names, journal title, volume, issue, year, copyright owner as specified in the Journal, DOI number. Links to the final article published on the website of the Journal are encouraged.